AMRStencil: An Embedded Domain
Specific Language (eDSL)

What is it?

« Class and template library for writing AMR Stencil codes.

 Embedding language is C++11
« Embedded: can be used with vendor compiler, gets better with special compilers.
» Very big improvement in language with lots of support.

Captures what we have found to be the essential aspects of AMR Stencil codes
If you have the ROSE compiler extension for AMRStencil, THEN you can enjoy
cross-platform high performance execution.
« ROSE by no means has a lock on the AMRStencil APl. We welcome other
implementations
« AMRStencil default implementation ships with serial, MPI, and OpenMP in C++11

Main abstractions
« Stencil, Box, RectMDArray, LevelData
Stencils have well-defined symbolic calculus
« S1(S2(A)) =(S1*S2)(A) S1(c1*A)+S2(A) = (c1*S1+S2)(A)
» fusion, performance models, polyhedra, etc are all much easier to analyze.

Brian Van Straalen (bvstraalen@lbl.gov)

The Goal

Write it in C++
Get rid of our Fortran kernels (our current pointwise and stencil DSL and
multi-dim array)
« Bury ChomboFortran in the revision control system.
John Bell's Paraphrase: “I'm willing to rewrite my code, once, then ['ll
retire”
* In reality, Chombo will be rewritten.
« A Better, more agile Chombo
AMRStencil DSL does not specify any parallelism or data layout.
« Jeff Larkin’s “descriptive”, taken further.
* In RAJA speak, user code has no exec policy
* In Kokkos-speak, user code has no Space or Layout statements.
* NO pragmas, no directives, no memory model, no placement, no
mapping, no target
Move real application frameworks onto the real target DSL completely.
* I'm sort of done with mini-apps.
Create the correct place to put CS effort (profile hooks, control of loops)

A Question of Binding

« AMRStencil attempts to be very clear about what is compile-time
bindable and what must remain runtime bound

« A Stencil object is compile-time (requires lots of
constexpr use in header files to get it all pinned down)

« Box is a run-time object (low and high corners), subject

to adaptive mesh refinement

* Array location and bounds are run-time
certain properties of Box are compile-time (modular sizes).

« Stencils meet Boxs at run-time.

A significant difference from traditional stencil DSLs, which associate
Stencils with arrays at compile time.

AMR Stencil -- Example:

Multigrid

Multigrid::relax(LevelData<double, 1> & a_ phiy
const LevelData<double, 1> & a_rhs)

{
a_phi.exchange();
BoxLayout bl = a phi.getBoxLayout();
BLIterator blit(bl);
for (blit.begin();blit!=blit.end();zt+blit)
{
Box bx = bl[*blit];
RectMDArray<double, 1> temp(bx);
temp |= m Laplacian(phi[*blit],bx);
temp -= a rhs[*blit];
temp *= m lambda;
a phi[*blit] += temp; Iterate over
} patches
e h
. b=+ MA(9) — p)

Apply stencil expressed as

Geometric

Highly expressive: complete
implementation ~ 150 LOC.

Uses high-level description of
block-structured stencil
operations. Structured-grid stencil
language, plus BoxLib / Chombo
abstractions for unions of
rectangles.

Opportunities for parallelism: over
patches, over points in a patch.
High-level expression of
dependencies (e.g. stencil
operators;

exchange () ,iterators).

Other examples under
development: AMR Elliptic,
compressible flow benchmarks.

Increment solution
with multiple of residual.

a linear combination of
shift operators. Replaces
multiple nested loops.

ONLY program the algorithm essentials,
leave everything else to DSL.

AMR Shift Calculus DSL optimization for x86/CPU with SIMD extensions

 High-level, user-friendly description of stencils, domain-specific information enable the
generation of clean loop-based code that can be optimized with ROSE/PolyOpt
» Dedicated high-order stencil optimization pass in PolyOpt:
1. Program transformations using associative/commutative properties of stencil
convolutions
2. Target-specific code synthesis for SIMD ISA of the stencil application

Results
» Setup: 4-core Intel Core i7-4770K Haswell processor with AVX2 SIMD, Intel ICC compiler

* box size=64. Execution of the stencil, double-precision data, no fusion across operators

'Fl;heﬁreﬂczal 8th-order mixed 8" order mixed 6" order
eak: 2 deriv 4th deriv Laplacian
2d 64pts 2d 81pts 3d 125pts
Performance s = s
Simple codegen 10.53 GF/s 10.36 GF/s 5.51 GF/s
+ parallelization 43.31 GF/s 42.51 GF/s 22.26 GF/s
+ + PolyOpt 75.17 GF/s 75.90 GF/s 43.6 GF/s
Productivity DSL input ~100 lines ~100 lines ~ 200 lines
Generated code 4367 lines 4649 lines 8247 lines

How to overcome exascale challenges

* Generation of Complex Code for
10 Levels
of Memory Hierarchy with SW
managed cache

— 4th order stencil computc
from !
CNS Co-Design Proxy-App

10

DSL Code
Auto Generated Code 446 500 553 819

— Code size of autogenerated code

Challenges

Default AMRStencil uses some template metaprogramming

Most ideas seen here already: forall, lambda bodies, multidimensional array

Metaprogramming helps the vendor compiler do a decent job

« Template spec will generate 1 output. Like a good language spec should
* Performance models and auto-tuning need to explore hundreds of variants
Hot-shot template techniques create more headaches for an augmented compiler tool.

« Giving Dan Quinlan something to do on his weekends.

lambdas with side-effects can really mess up debugging.

...I can almost make Stencils constexpr

6e-5| Se—4

le-4

3e-3

4e-4

le—4

3e-5 /

I . . Te-5| 2e-4| de—4| de-4| 1e-3| 8e-4| 204 7e—)/3e_5
Not every Stencil is knowable at compile-time 7?/
Embedded Boundary Chombo i el s B s il 974
« Stencil points and weights from least-squares solve fedpte e “:j 10 le
Currently using runtime stencil playback i i I P
2e-4 l}ﬂﬁ-le-l
—

As a parting shot: virtual functions are the modern callback [[es

virtual functions are how you plug physics into frameworks

» Separation of Concerns (SoC)
« Layered Designs squares.

Brian Van Straalen (bvstraalen@lbl.gov)
Anshu Dubey, Dan Quinlan, Phil Colella, Dan Graves, Terry Ligocki

(d) Stencil for a cut cell using weighted least

